Selamat Datang di P.O.'s Blog - Teknik Pemesinan dan Otomotif 2012 ~ P.O.'s Blog
iloveindonesia

Senin, 13 Agustus 2012

Cara Membersihkan Ruang Bakar pada Motor

Pembakaran yang optimal adalah kunci bagi kenikmatan ber­kendara. Dengan tenaga maksimal, mesin akan terasa responsif dan ke­sempurnaan pembakaran membuat efisiensi bahan bakar berada di titik terbaik.

Untuk mencapai itu, servis rutin adalah langkah tepat. Dengan perawatan teratur pada ruang bakar dan saluran bahan bakar, membuat mobil selalu berada pada kondisi terbaik. Jalan paling mudah adalah dengan membawanya ke bengkel resmi ataupun mekanik ahli.

Namun bukan berarti Anda tak bisa melakukannya sendiri. Di pasar cukup banyak produk pembersih ruang bakar dengan ber­bagai merek dan jenis. Umumnya terbagi dalam 2 jenis yaitu sistem tuang ke tangki bahan bakar (fuel-tank in) dan semprot langsung ke ruang bakar/intake manifold.

Nah, kali ini kami akan membahas penggunaan pembersih ruang bakar de­ngan sistem semprot. Pro­duk jenis ini memilik­i keunggulan yaitu hasil ce­pat de­ngan cara instan. Anda pun bisa melakukanya sendiri di rumah kala waktu senggang tiba.




 
Ikuti langkah mudah
Sebelum memulai penyemprotan, pastikan mesin dalam suhu kerja. Setelah itu baru ikuti lankah-langkah berikut
• Lepaskan busi dari kepala silinder

• Setelah busi terlepas, masukkan cairan pembersih ke ruang bakar melalui lubang busi

• Setelah semua cairan dimasukkan ke dalam ruang bakar, diamkan selama 15 menit agar kemampuan tumpukan karbon melunak

• Untuk mengeluarkan kotoran tersebut, starter mesin agar cairan terdesak keluar via lubang busi. Untuk itu, gunakan kain lap agar karbon yang telah melunak tidak mengotori ruang mesin

• Matikan mesin kemudian pasang kembali busi dan siapkan mesin untuk menyala

Starter mesin. Bila ada gejala mesin susah hidup itu wajar. Tetap starter sambil menginjak pedal gas

• Ketika mesin menyala, tahan pada putaran 4.000-5.000 rpm untuk memastikan semua cairan dan kerak yang ada terbakar dan terbuang hingga asap tidak lagi keluar dari lubang knalpo

 Lebih ramah lingkungan dengan water base
Bahan dasar yang digunakan produk pembersih ruang bakar umumnya ada 2 jenis, yaitu solvent dan water base. Penggunaan solvent sangat luas karena efektivitas kinerjanya. Sedangkan jenis yang kedua adalah water base dengan bahan dasar air.

“Bahan water base memiliki banyak keuntungan yaitu lebih ramah lingkungan dan tidak berbahaya bagi kulit manusia. Dan terpenting adalah aman bagi catalytic converter karena kandungan airnya mudah menguap,” ucap Herman Widjaja, dari PT Autotama Aneka, distributor produk Soft99 di Indonesia.

 Mata kamera membuktikannya
Tujuan dari produk pembersih ruang bakar tentulah membersihkan ruang ba­kar. Untuk itu ka­mi menggunakan ka­mera endoskopi untuk ‘mengintip’ kondisi ruang bakar sebelum dan sesudah aplikasi.

Jika sebelum proses pengerjaan kepala piston dipenuhi tumpukan kerak, maka setelah disemprot maka deposit itu rontok dengan sendirinya.

Lebih jauh, kepala piston mulai terlihat bersih dan menandakan ruang bakar telah kembali menjadi ruang ideal untuk pembakaran.

Kotoran pun dapat terlihat dari cairan yang kami isap dengan tabung vakum sebagai bukti bahwa penetran ini turut melunakan tumpukan karbon di ruang bakar.

 Ganti pelumas
Biar bagaimana pun, penetran pembersih ruang bakar yang diendapkan akan menyusup ke sistem pelumasan, meski ring piston masih dalam kondisi baik sekalipun. Nah, pelumas pun akan menurun kualitasnya akibat terkontaminasi. Untuk itu, segera ganti pelumas setelah proses ini berlangsung.

Sumber: http://autobildindonesia.com/read/2012/05/28/5724/16/6/Cara-Instan-Membersihkan-Ruang-Bakar-Dengan-Hasil-Sepadan

Sabtu, 04 Agustus 2012

Penemperan

Penemperan (bahasa Inggris: Tempering) adalah suatu teknik perlakuan panas untuk logam dan alloy. Dengan baja, penemperan dilakukan untuk mengeraskan dengan cara mengubah martensit yang getas menjadi bainit atau ferit. Dalam metalurgi, selalu ada tawar menawar antara kelenturan (ductility) dan kegetasan (brittleness). Proses penemperan harus diawasi terus menerus karena baik suhu maupun waktu tempering sangat menentukan sifat-sifat mekanik hasil akhir.
Semakin tinggi temperatur, kekerasan yang dihasilkan akan semakin rendah demikian sebaliknya. Semakin lama waktu proses penemperan.

Sumber: http://id.wikipedia.org/wiki/Penemperan

Pelapisan Krom

Pelapisan krom adalah suatu perlakuan akhir menggunakan elektroplating oleh kromium. Pelapisan dengan krom dapat dilakukan pada berbagai jenis logam seperti besi, baja, atau tembaga. Pelapisan krom juga dapat dilakukan pada plastik atau jenis benda lain yang bukan logam, dengan persyaratan bahwa benda tersebut harus dicat dengan cat yang mengandung logam sehingga dapat mengalirkan listrik.
Pelapisan krom menggunakan bahan dasar asam kromat, dan asam sulfat sebagai bahan pemicu arus, dengan perbandingan campuran yang tertentu. Perbandingan yang umum bisa 100:1 sampai 400:1. Jika perbandingannya menyimpang dari ketentuan biasanya akan menghasilkan lapisan yang tidak sesuai dengan yang diharapkan.
Faktor lain yang sangat berpengaruh pada proses pelapisan krom ini adalah temperatur cairan dan besar arus listrik yang mengalir sewaktu melakukan pelapisan. Temperatur pelapisan bervariasi antara 35 °C sampai 60 °C dengan besar perbandingan besar arus 18 A/dm2 sampai 27 A/dm2.
Elektroda yang digunakan pada pelapisan krom ini adalah timbal (Pb) sebagai anode (kutub positif) dan benda yang akan dilapis sebagai katode (kutub negatif). Jarak antara elektrode tersebut antara 9 cm sampai 29 cm. Sumber listrik yang digunakan adalah arus searah antara 10 - 25 Volt, atau bisa juga menggunakan aki mobil.

Sumber: http://id.wikipedia.org/wiki/Pelapisan_krom

Teknik Industri


Teknik industri adalah cabang dari ilmu teknik yang berkenaan dengan pengembangan, perbaikan, implementasi, dan evaluasi sistem integral dari manusia, pengetahuan, peralatan, energi, materi, dan proses.

Bidang keahlian

DI ITB dan beberapa perguruan tinggi di Indonesia, ilmu Teknik Industri diklasifikasikan ke dalam tiga bidang keahlian, yaitu Sistem Manufaktur, Manajemen Industri, dan Sistem Industri dan Tekno Ekonomi.
  • Sistem Manufaktur
Sistem Manufaktur adalah sebuah sistem yang memanfaatkan pendekatan teknik industri untuk peningkatan kualitas, produktivitas, dan efisiensi sistem integral yang terdiri dari manusia, mesin, material, energi, dan informasi melalui proses perancangan, perencanaan, pengoperasian, pengendalian, pemeliharaan, dan perbaikan dengan menjaga keselarasan aspek manusia dan lingkungan kerjanya. Jenis bidang keilmuan yang dipelajari dalam Sistem Manufaktur ini antara lain adalah Sistem Produksi, Perencanaan dan Pengendalian Produksi, Pemodelan Sistem, Perancangan Tata Letak Pabrik, dan Ergonomi.
  • Manajemen Industri
Bidang keahlian Manajemen Industri adalah bidang keahlian yang memanfaatkan pendekatan teknik industri untuk penciptaan dan peningkatan nilai sistem usaha melalui fungsi dan proses manajemen dengan bertumpu pada keunggulan sumber daya insani dalam menghadapi lingkungan usaha yang dinamis. Jenis bidang keilmuan yang dipelajari dalam Manajemen Industri antara lain adalah Manajemen Keuangan, Manajemen Kualitas, Manajemen Inovasi, Manajemen Sumber Daya Manusia, Manajemen Pemasaran, Manajemen Keputusan dan Ekonomi Teknik.
  • Sistem Industri dan Tekno Ekonomi
Bidang keahlian Sistem Industri dan Tekno-Ekonomi adalah bidang keahlian yang memanfaatkan pendekatan teknik industri untuk peningkatan daya saing sistem integral yang terdiri atas tenaga kerja, bahan baku, energi, informasi, teknologi, dan infrastruktur yang berinteraksi dengan komunitas bisnis, masyarakat, dan pemerintah. Bidang keilmuan yang dipelajari di dalam Sistem Industri dan Tekno Ekonomi antara lain adalah Statistika Industri, Sistem Logistik, Logika Pemrograman, Operational Research, dan Sistem Basis Data

Sejarah Teknik Industri

Di dunia

Awal mula Teknik Industri dapat ditelusuri dari beberapa sumber berbeda. Frederick Winslow Taylor sering ditetapkan sebagai Bapak Teknik Industri meskipun seluruh gagasannya tidak asli. Beberapa risalah terdahulu mungkin telah memengaruhi perkembangan Teknik Industri seperti risalah The Wealth of Nations karya Adam Smith, dipublikasikan tahun 1776; Essay on Population karya Thomas Malthus dipublikasikan tahun 1798; Principles of Political Economy and Taxation karya David Ricardo, dipublikasikan tahun 1817; dan Principles of Political Economy karya John Stuart Mill, dipublikasikan tahun 1848. Seluruh hasil karya ini mengilhami penjelasan paham Liberal Klasik mengenai kesuksesan dan keterbatas dari Revolusi Industri. Adam Smith adalah ekonom yang terkenal pada zamannya. "Economic Science" adalah frasa untuk menggambarkan bidang ini di Inggris sebelum industrialisasi America muncul .
Kontribusi penting lainnya dan mengilhami Taylor adalah Charles W. Babbage. Babbage adalah profesor ahli matematika di Cambridge University. Salah satu kontribusi pentingnya adalah buku yang berjudul On the Economy of Machinery and Manufacturers tahun 1832 yang mendiskusikan banyak topik menyangkut manufaktur. Babbage mendiskusikan gagasan tentang Kurva Belajar (Learning Curve), pembagian tugas dan bagaimana proses pembelajaran dipengaruhi, dan efek belajar terhadap peningkatan pemborosan. Dia juga sangat tertarik pada metode pengaturan pemborosan. Charles Babbage adalah orang pertama yang menganjurkan membangun komputer mekanis. Dia menyebutnya "analytical calculating machine" , untuk tujuan memecahkan masalah matematika yang kompleks.
Di Amerika Serikat selama akhir abad 19 telah terjadi perkembangan yang memengaruhi pembentukan Teknik Industri. Henry R. Towne menekankan aspek ekonomi terhadap pekerjaan insinyur yakni bagaimana seorang insinyur akan meningkatkan laba perusahaan? Towne kemudian menjadi anggota American Society of Mechanical Engineers (ASME) sebagaimana yang dilakukan beberapa pendahulunya di bidang Teknik Industri. Towne menekankan perlunya mengembangkan suatu bidang yang terfokus pada sistem manufactur. Dalam Industrial Engineering Handbook dikatakan bahwa "ASME adalah tempat berkembang biaknya Teknik Industri". Towne bersama Fredrick A. Halsey bekerja mengembangkan dan memaparkan suatu Rencana Kerja untuk mengurangi pemborosan kepada ASME. Tujuan Recana ini adalah meningkatkan produktivitas pekerja tanpa berpengaruh negatif terhadap ongkos produksi. Rencana ini juga menganjurkan bahwa sebagian keuntungan dapat dibagikan kepada pekerja dalam bentuk insentif.
Henry L. Gantt (juga anggota ASME) menekankan pentingnya seleksi karyawan dan pelatihannya. Dia, seperti juga Towne dan Halsey, memaparkan paper dengan topik-topik seperti biaya, seleksi karyawan, pelatihan, skema insentif, dan penjadwalan kerja. Dia adalah pencipta Diagram Gantt (Gantt chart), yang saat ini merupakan diagram yang sangat populer digunakan dalam penjadwalan kerja. Sampai sekarang Gantt chart digunakan dalam bidang statistik untuk membuat prediksi yang akurat. Jenis diagram lainnya telah dikembangkan untuk tujuan penjadwalan seperti Program Evaluation and Review Technique (PERT) dan Critical Path Mapping (CPM).
Sejarah Teknik Industri tidak lengkap tanpa menyebut Frederick Winslow Taylor. Taylor mungkin adalah pelopor Teknik Industri yang paling terkenal. Dia mempresentasikan gagasan mengenai pengorganisasian pekerjaan dengan menggunakan manajemen kepada seluruh anggota ASME. Dia menciptakan istilah "Scientific Management" untuk menggambarkan metode yang dia bangun melalui studi empiris. Kegiatannya, seperti yang lainnya, meliputi topik-topik seperti pengorganisasian pekerjaan dengan manajemen, seleksi pekerja, pelatihan, dan kompensasi tambahan bagi seluruh individu yang memenuhi standar yang dibuat perusahaan. Scientific Management memiliki efek yang besar terhadap Revolusi Industri, baik di Amerika maupun di luar negara Amerika.
Keluarga Gilbreth diakui akan pengembangan terhadap Studi Waktu dan Gerak (Time and Motion Studies). Frank Bunker Gilbreth dan istrinya Dr. Lillian M. Gilbreth melakukan penelitian mengenai Pemahaman Kelelahan (Fatigue), Skill Development, Studi Gerak (Motion Studies), dan Studi Waktu (Time Studies). Lillian Gilbreth memeliki gelasr Ph.D. dalam bidang Psikologi yang membantunya dalam memahami masalah-masalah manusia. Keluarga Gilbreth meyakini bahwa terdapat satu cara terbaik ("one best way") untuk melakukan pekerjaan. Salah satu pemikiran mereka yang siginifikan adalah pengklasifikasian gerakan dasar manusia ke dalam 17 macam, dimana ada gerakan yang efektif dan ada yang tidak efektif. Mereka menamakannya Tabel Klasifikasi Therbligs (ejaan terbalik dari kata Gilbreth). Gilbreth menyimpulkan bahwa waktu untuk menyelesaikan gerakan yang efektif (effective therblig) lebih singkat tetapi sulit untuk dikurangi, demikian sebaliknya dengan non-effective therbligs. Gilbreth mengklaim bahwa setiap bentuk pekerjaan dapat dipisah-pisah ke dalam bentuk pekerjaan yang lebih sederhana.
Saat Amerika Serikat menghadapi Perang Dunia II, secara diam-diam pemerintah mendaftarkan para ilmuwan untuk meneliti perencanaan, metode produksi, dan logistik dalam perang. Para ilmuwan ini mengembangkan sejumlah teknik untuk pemodelan dan memprediksi solusi optimal. Lebih lanjut saat informasi ini terbongkar. lahirlah Operation Research. Banyak hasil penelitian yang masih sangat teoritis dan pemahaman bagaimana menggunakannya dalam dunia nyata tidak ada. Hal inilah yang menyebabkan jurang antara kelompok Operation Research (OR) dan profesi insinyur terlalu lebar. hanya sedikit perusahaan yang dengan sigap membentuk departemen Operation Research dan mengkapitalisasikannya.
Pada 1948 sebuah komunitas baru, American Institute for Industrial Engineers (AIIE), dibuka untuk pertama kalinya. Pada masa ini Teknik Industri benar-benar tidak mendapat tempat yang khusus dalam struktur perusahaan. Selama tahun 1960 dan sesudahnya, beberapa perguruan tinggi mulai mengadopsi teknik-teknik operation research dan menambahkannya pada kurikulum Teknik Industri. Sekarang untuk pertama kalinya metode-metode Teknik Industri disandarkan pada fondasi analisis, termasuk metode empiris terdahulu lainnya. Pengembangan baru terhadap optimisasi dalam matematika sebagaimana metode baru dalam analisis statistik membantu dalam mengisi lubang kosong bidang Teknik Industri dengan pendekatan teoritis.
Kemudian, permasalahan Teknik Industri menjadi begitu besar dan kompleks pada dan saat komputer digital berkembang. Dengan komputer digital dan kemampuannya menyimpan data dalam jumlah besar, insinyur Teknik Industri memiliki alat baru untuk mengkalkulasi permasalahan besar secara cepat. Sebelumnya komputasi pada suatu sistem memakan mingguan bahkan bulanan, tetapi dengan komputer dan perkembangan sub-program "sub-routines", perhitungan dapat dilakukan dalam hitungan menit dan dengan mudah dapat diulangi terhadap kriteria problem yang baru. Dengan kemampuannya menyimpan data, hasil perhitungan pada sistem sebelumnya dapat disimpan dan dibandingkan dengan informasi baru. Data-data ini membuat Teknik Industri menjadi cara yang kuat dalam mempelajari sistem produksi dan reaskinya bila terjadi perubahan.

Di Indonesia

Sejarah Teknik Industri di Indonesia di awali dari kampus ITB Institut Teknologi Bandung pada tanggal 1 Januari 1971. Sejarah pendirian pendidikan Teknik Industri di ITB tidak terlepas dari kondisi praktik sarjana mesin pada tahun lima-puluhan. Pada waktu itu, profesi sarjana Teknik mesin merupakan kelanjutan dari profesi pada zaman Belanda, yaitu terbatas pada pekerjaan pengoperasian dan perawatan mesin atau fasilitas produksi. Barang-barang modal itu sepenuhnya diimpor, karena di Indonesia belum terdapat pabrik mesin.
Di Universitas Indonesia (www.ui.ac.id), keilmuan Teknik Industri telah dikenalkan pada awal tahun tujuh puluhan, dan merupakan sub bagian dari keilmuan Teknik Mesin. Sejak 30 Juni 1998, diresmikanlah Jurusan Teknik Industri (sekarang Departemen Teknik Industri) Fakultas Teknik Universitas Indonesia, situs resminya di http://www.ie.ui.ac.id/
Kalau pada masa itu, dijumpai bengkel-bengkel tergolong besar yang mengerjakan pekerjaan perancangan konstruksi baja seperti yang antara lain terdapat di kota Pasuruan dan Klaten, pekerjaan itu pun masih merupakan bagian dari kegiatan perawatan untuk mesin-mesin pabrik gula dan pabrik pengolahan hasil perkebunan yang terdapat di Jawa Timur dan Jawa Tengah. Dengan demikian kegiatan perancangan yang dilakukan oleh para sarjana Teknik Mesin pada waktu itu masih sangat terbatas pada perancangan dan pembuatan suku-suku cadang yang sederhana berdasarkan contoh-contoh barang yang ada. Peran yang serupa bagi sarjana Teknik Mesin juga terjadi di pabrik semen dan di bengkel-bengkel perkereta-apian.
Pada saat itu, dalam menjalankan profesi sebagai sarjana Teknik Mesin dengan tugas pengoperasian mesin dan fasilitas produksi, tantangan utama yang mereka hadapi ialah bagaimana agar pengoperasian itu dapat diselenggarakan dengan lancar dan ekonomis. Jadi fokus pekerjaan sarjana Teknik Mesin pada saat itu ialah pengaturan pembebanan pada mesin-mesin agar kegiatan produksi menjadi ekonomis, dan perawatan (maintenance) untuk menjaga kondisi mesin supaya senantiasa siap pakai.
Pada masa itu, seorang kepala pabrik yang umumnya berlatar-belakang pendidikan mesin, sangat ketat dan disiplin dalam pengawasan terhadap kondisi mesin. Di pagi hari sebelum pabrik mulai beroperasi, ia keliling pabrik memeriksa mesin-mesin untuk menyakini apakah alat-alat produksi dalam keadaan siap pakai untuk dibebani suatu pekerjaan.
Pengalaman ini menunjukan bahwa pengetahuan dan kemampuan perancangan yang dipunyai oleh seorang sarjana Teknik Mesin tidak banyak termanfaatkan, tetapi mereka justru memerlukan bekal pengetahuan manajemen untuk lebih mampu dan lebih siap dalam pengelolaan suatu pabrik dan bengkel-bengkel besar.
Sekitar tahun 1955, pengalaman semacam itu disadari benar keperluannya, sehingga sampai pada gagasan perlunya perkuliahan tambahan bagi para mahasiswa Teknik Mesin dalam bidang pengelolaan pabrik.
Pada tahun yang sama, orang-orang Belanda meninggalkan Indonesia karena terjadi krisis hubungan antara Indonesia-Belanda, sebagai akibatnya, banyak pabrik yang semula dikelola oleh para administratur Belanda, mendadak menjadi vakum dari keadministrasian yang baik. Pengalaman ini menjadi dorongan yang semakin kuat untuk terus memikirkan gagasan pendidikan alternatif bidang keahlian di dalam pendidikan Teknik Mesin.
Pada awal tahun 1958, mulai diperkenalkan beberapa mata kuliah baru di Departemen Teknik Mesin, diantaranya : Ilmu Perusahaan, Statistik, Teknik Produksi, Tata Hitung Ongkos dan Ekonomi Teknik. Sejak itu dimulailah babak baru dalam pendidikan Teknik Mesin di ITB, mata kuliah yang bersifat pilihan itu mulai digemari oleh mahasiswa Teknik Mesin dan juga Teknik Kimia dan Tambang.
Sementara itu pada sekitar tahun 1963-1964 Bagian Teknik Mesin telah mulai menghasilkan sebagian sarjananya yang berkualifikasi pengetahuan manajemen produksi/teknik produksi. Bidang Teknik Produksi semakin berkembang dengan bertambahnya jenis mata kuliah. Mata kuliah seperti : Teknik Tata Cara, Pengukuran Dimensional, Mesin Perkakas, Pengujian Tak Merusak, Perkakas Pembantu dan Keselamatan Kerja cukup memperkaya pengetahuan mahasiswa Teknik Produksi.
Pada tahun 1966 - 1967, perkuliahan di Teknik Produksi semakin berkembang. Mata kuliah yang berbasis teknik industri mulai banyak diperkenalkan. Sistem man-machine-material tidak lagi hanya didasarkan pada lingkup wawasan manufaktur saja, tetapi pada lingkup yang lebih luas yaitu perusahaan dan lingkungan. Dalam pada itu, di Departemen ini mulai diajarkan mata kuliah : Manajemen Personalia, Administrasi Perusahaan, Statistik Industri, Perancangan Tata Letak Pabrik, Studi Kelayakan, Penyelidikan Operasional, Pengendalian Persediaan Kualitas Statistik dan Programa Linier. Sehingga pada tahun 1967, nama Teknik Produksi secara resmi berubah menjadi Teknik Industri dan masih tetap bernaung di bawah Bagian Teknik Mesin ITB.
Pada tahun 1968 - 1971, dimulailah upanya untuk membangun Departemen Teknik Industri yang mandiri. Upaya itu terwujud pada tanggal 1 Januari 1971.

Sumber: http://id.wikipedia.org/wiki/Teknik_industri

Teknologi Produksi


Teknologi produksi adalah cara meningkatkan produksi dan produktivitas yang dapat diterapkan secara luas dalam industri manufaktur dan jasa.
Ada sembilan area teknologi, yaitu:
  • Teknologi Mesin
  • Automatic Identifications Systems (AIS) dan Radio Frequency Identification (RFID)
  • Pengendalian Proses
  • Sistem Visi
  • Robot
  • Sistem Penyimpanan dan Pengambilan secara Otomatis (Automated Storage and Retrieval Systems – ASRS)
  • Kendaraan Terpadu Otomatis (Automated Guided Vehicles – AGV)
  • Sistem Manufaktur Fleksibel (Flexible Manufacturing Systems – FMS)
  • Manufaktur Terintegrasi Komputer (Computer Integrated Manufacturing – CIM).
Teknologi Mesin
Hampir semua mesin yang melakukan operasi seperti pemotongan, pengeboran, dan penggilingan di dunia sedang mengalami perkembangan pesat dalam hal akulturasi dan pengendalian. Mesin yang baru dapat memodifikasi komponen logam dengan ketelitian kurang dari satu mikron 1/76 rambut manusia. Alat tersebut dapat mempercepat air hingga tiga kali kecepatan suara untuk memotong titanium yang digunakan sebagai peralatan bedah. Sekarang tersedia kecerdasan buatan untuk mengendalikan permesinan baru melalui chip komputer yang memungkinkan pembuatan benda-benda yang lebih kompleks dan lebih tepat dengan lebih cepat. Pengendalian elektronik meningkatkan kecepatan dengan mengurangi waktu pertukaran, mengurangi limbah (karena hanya terjadi kesalahan yang lebih sedikit), dan meningkatkan fleksibilitas. Permesinan dengan mesin dan memori tersendiri disebut mesin Computer Numerical Control (CNC). CNC atau mesin dengan computer dan memorinya sendiri.
Automatic Identifications Systems (AIS) dan Radio Frequency Identification (RFID)
AIS adalah suatu sistem untuk mengubah data menjadi bentuk elektronik, contohnya Barcode. Peralatan baru, mulai dari mesin manufaktur yang terkendali secara numerik hingga mesin ATM, dikendalikan dengan sinyal elektronik digital. Elektron merupakan kendaraan yang hebat untuk mengirimkan informasi, tetapi mereka memiliki keterbatasan utama hampir semua data MO tidak berbentuk bit dan byte. Oleh karena itu, manajer operasi harus mendapatkan data berbentuk elektronik, Membuat data menjadi digital dilakukan dengan menggunakan komputer, kode garis, frekuensi radio, karakter optikal dalam cek bank, dan lain-lain. Automatic Identifications Systems (AIS) membantu mengubah data menjadi bentuk elektronik yang mudah dimanipulasi.
Karena biayanya yang rendah dan penggunanya yang terus meluas, Radio Frequency Identification (RFID) perlu diperhatikan secara khusus. RFID adalah rangkaian terintegrasi dengan antena kecilnya sendiri yang menggunakan gelombang radio untuk mengirimkan sinyal dalam jarak terbatas, biasanya beberapa yard. Kartu RFID menyediakan identifikasi unik yang memungkinkan pelacakan dan pemonitoran bagian, palet, orang dan hewan atau apapun bergerak. RFID tidak harus dalam jarak pandang antara pembaca dan kartunya. Dengan RFID kasir dapat memindai seluruh isi keranjang belanja dalam hitungan detik.
Pengendalian Proses
Pengendalian proses adalah penggunaan teknologi informasi untuk memantau dan mengendalikan suatu proses fisik. Sebagai contoh, pengendalian proses digunakan untuk mengukur kelembaban dan ketebalan kertas ketika melewati sebuah mesin kertas dengan kecepatan ribuan kaki per menit. Pengendalian proses juga digunakan untuk menetapkan dan mengendalikan temperatur, tekanan, dan kualitas dalam proses penyulingan minyak, proses petrokimia, pabrik semen, penggilingan baja, reaktor nuklir, dan fasilitas yang terfokus pada produk lainnya.
Sistem Visi
Sistem Visi memadukan teknologi kamera video dan computer, serta sering digunakan dalam pemeriksaan. Pemeriksaan visual merupakan tugas penting dihampir semua proses pengolahan makanan dan organisasi manufaktur. Terlebih lagi, dalam banyak penerapan, pemeriksaan visual yang dilakukan manusia merupakan pekerjaan yang membosankan, memusingkan dan sangat mungkin terjadi kesalahan. Oleh karena itu, sistem visi digunakan secara luas saat barang yang diamati sangat mirip. Sistem visi digunakan untuk memastikan terdapat sealant dan dalam jumlah yang cukup dalam transmisi mesin cuci Whirpool, dan untuk memeriksa perakitan saklar pada pabrik Foster di Des Plaines, Illinois. Secara konsisten, sistem visi memang cukup akurat, tidak menjadikan pekerja bosan, dan dengan biaya yang tidak terlalu besar. Sistem ini sangat unggul bagi mereka yang mencoba melakukan pekerjaan ini.
Robot
Bila suatu mesin cukup fleksibel dan mampu memegang, memindahkan, atau mengambil barang, maka disebut Robot. Robot adalah peralatan mesin yang mungkin memiliki beberapa saraf elektronik yang disimpan dalam chip semikonduktor yang akan menyalakan sejumlah motor dan saklar. Berfungsi karena impuls elektronik yang mengaktifkan motor dan tombol. Robot dapat digunakan secara efektif untuk melakukan tugas-tugas yang umum bersifat monoton dan berbahaya, atau tugas-tugas yang dapat dikerjakan secara lebih baik dengan menggunakan mesin sebagai pengganti tenaga manusia. Pekerjaan yang membutuhkan konsistensi, akurasi, kecepatan, kekuatan, atau daya dapat ditingkatkan dengan menggantikan manusia dengan mesin.
Automated Storage and Retrieval Systems (ASRS)
Karena terdapat banyak sekali kesalahan yang dilakukan manusia dalam sistem pergudangan, dibuatlah gudang yang dapat dikendalikan oleh komputer. Sistem yang dikenal sebagai Automated Storage and Retrieval Systems (ASRS) menyediakan penempatan serta pengambilan komponen dan produk secara otomatis dari dan menuju tempat tertentu didalam gudang. Sistem ini biasa digunakan dalam fasilitas distribusi perdagangan eceran, seperti Wal-Mart, Tupperware, dan Benetton. Sistem ini juga digunakan di area persediaan dan pengujian dari perusahaan manufaktur.
Automated Guided Vehicles (AGV)
Penanganan bahan secara otomatis dapat berbentuk rel tunggal, ban berjalan, robot, atau automated guided vehicles. Automated Guided Vehicles (AGV) adalah kereta yang dipandu dan dikendalikan secara elektronik yang digunakan dalam proses manufaktur untuk memindahkan komponen dan peralatan. AGV juga digunakan di perkantoran untuk memindahkan surat, juga di rumah sakit dan penjara untuk mengantar makanan.
Flexible Manufacturing Systems (FMS)
FMS adalah suatu sistem yang menggunakan sel kerja otomatis yang dikendalikan oleh sinyal elektronik dari fasilitas komputer terpusat yang biasa. Sebuah FMS bersifat fleksibel karena peralatan penanganan bahan dan mesinnya dikendalikan dengan sinyal elektronik (program komputer) yang mudah diubah. Operator hanya memasukan program baru yang dibutuhkan untuk memproduksi produk yang berbeda-beda. Hasilnya adalah sebuah sistem yang dapat memproduksi dengan volume rendah, tetapi sangat beragam. Bagaimanapun juga, FMS bukanlah merupakan obat mujarab untuk semua masalah karena setiap komponen (mesin dan peralatan penanganan bahan) memilik keterbatasan fisiknya masing-masing. Sebuah FMS juga memiliki persyaratan komunikasi yang ketat di antara berbagai komponen unik didalamnya. Walaupun demikian, pengurangan waktu untuk pertukaran alat dan penjadwalan yang lebih akurat menghasilakan waktu produksi yang lebih singkat dan utilisasi yang meningkat. Karena terdapat kesalahan yang lebih sedikit, limbah yang lebih sedikit juga menurunkan biaya. Keutamaan inilah yang dicari para manajer operasi : fleksibilitas untuk menghasilkan produk yang terkustomisasi, peningkatan utilisasi untuk mengurangi biaya, dan perbaikan waktu produksi untuk memperbaiki respons pada pelanggan.
Computer Integrated Manufacturing (CIM)
FMS dapat diperluas secara elektronik ke departemen rekayasa dan pengendalian persediaan, dan departemen pergudangan dan pengiriman. Dengan cara ini, Computer Aided Design (CAD) menghasilkan perintah elektronik yang diperlukan untuk menjalankan mesin dengan kendali numerik. Dalam sebuah lingkaran Computer Integrated Manufacturing, suatu perubahan dalam desain yang diawali pada sebuah terminal CAD dapat menghasilkan perubahan komponen yang dihasilkan di shop floor dalam hitungan menit. Ketika kemampuan ini dipadukan dengan pengendalian persediaan, penggudangan, dan pengiriman sebagai bagian dari sebuah FMS, keseluruhan sistem ini disebut sebagai Computer Integrated Manufacturing (CIM). FMS dan CIM mengurangi perbedaan antara produksi yang bervolume rendah/berkeragaman tinggi dan produksi yang bervolume tinggi/berkeragaman rendah. Teknologi informasi memungkinkan FMS dan CIM untuk mengatasi meningkatnya keragaman produk dan meningkatnya volume.

Sumber: http://id.wikipedia.org/wiki/Teknologi_produksi

Rabu, 25 Juli 2012

Mesin 6 Silinder Segaris


Mesin 6 silinder segaris atau 6 segaris adalah sebuah mesin pembakaran dalam yang memiliki 6 silinder terpasang membentuk satu garis lurus pada bak mesin. Semua pistonnya menjalankan satu buah crankshaft. Mesin 6 silinder segaris adalah mesin dengan desain paling simpel untuk menciptakan sebuah keseimbangan mesin, sehingga mesin jenis ini menimbulkan lebih sedikit getaran daripada mesin dengan silinder lebih sedikit.

Kapasitas Mesin

Mesin 6 silinder segaris biasanya dipakai oleh para pabrikan otomotif untuk mesin mobil berkapasitas 2.0L sampai 5.0L.. Meskipun pernah dipakai untuk kapasitas yang lebih kecil (karena mesinnya sangat halus), tapi ongkos produksinya menjadi besar. Ciri lain dari mesin ini adalah membutuhkan tempat yang agak besar karena seluruh 6 silindernya diletakkan segaris, menjadikan mesin ini membutuhkan ruang mesin yang lebih besar dari mesin 4 segaris, V6, atau V8.

Tren

Mesin 6 silinder segaris lebih dulu diperkenalkan daripada V6. Mesin ini sudah dipakai oleh pabrikan Spyker tahun 1903 dan mesin V6 baru dipakai tahun 1950. Tapi, karena mesin ini membutuhkan ruang yang besar, belakangan ini mesin ini sudah sangat jarang dipakai dan digantikan oleh mesin V6.

Mesin 5 Silinder Segaris



Mesin 5 silinder segaris atau 5 segaris adalah sebuah mesin pembakaran dalam dengan 5 silinder yang terpasang sejajar dan menggunakan 1 blok mesin dan 1 crankcase. Konfigurasi mesin ini merupakan pilihan lain dari mesin di bawahnya (mesin 4 segaris) atau mesin diatasnya (6 segaris).
Dilihat dari sejarahnya, mesin 5 silinder segaris termasuk mesin yang jarang dipakai oleh para pabrikan kendaraan. Meskipun begitu, sejak awal kemunculannya mesin ini masih saja tetap dipakai oleh beberapa pabrikan seperti Audi, Volkswagen, Volvo, Land Rover TD5, beberapa model diesel Mercedes-Benz, dan Acura (2.5 TL dan Vigor). General Motors juga meluncurkan mesin 5 silinder segaris belakangan ini pada truknya (Chevrolet Colorado, Isuzu i-350, juga Hummer H3. Mesin ini merupakan bagian dari keluarga Mesin Atlas. Sejak Volvo 850 diluncurkan 1992, banyak mobil Volvo lain juga menggunakan mesin 5 silinder yang kadang ditambah Turbocharger.Volkswagen menggunakan mesin 5 silinder di Volkswagen Eurovan, dan sekarang juga dipakai di Jetta dan Rabbit untuk kawasan Amerika Utara. Audi sendiri banyak memakai mesin jenis ini tahun 1980an.
Karakteristik
http://bits.wikimedia.org/static-1.20wmf6/skins/common/images/magnify-clip.png
Mesin diesel 5 silinder 2-tak MAN B&W 5S50MC.
Keuntungan mesin 5 silinder segaris bila dibandingkan dengan mesin 4 silinder segaris adalah putaran tenaga (power stroke) yang lebih baol. Sebuah mesin 4 tak menjalankan silindernya sekali tiap 720 derajat, crankshaftnya membuat 2 putaran penuh. Jika diasumsikan berdasarkan urutan pembakaran mesin, kita dapat membagi angka 720 derajat dengan jumlah silinder total untuk mengetahui berapa putaran tenaganya. Contohnya, untuk mesin 4 segaris, 720° ÷ 4 = 180° jadinya ada 1 putaran tenaga tiap 180 derajat dan 2 putaran tenaga per putaran crankshaft. Sebuah mesin V8 mendapatkan putaran tenaga tiap 90 derajat, 4 putaran tenaga per putaran crankshaft.

Adi Kurniadi. Diberdayakan oleh Blogger.

 
Design by Wordpress Theme | Bloggerized by Free Blogger Templates | coupon codes